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On Equivalence of Spin and Field Pictures of 
Lattice Systems 
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We investigate the spin and field systems on a lattice connected by the Kac- 
Siegert transform. It is shown that the structures of corresponding theories are 
equivalent (in the sense of isomorphy of space of Gibbs states and order 
parameters). Using the idea of equivalence of spin and field pictures, we exhibit 
a class of lattice systems possessing infinitely uncountably many ground states. 
The systems of this type with infinite-range, slow-decaying interactions are 
expected to have a spin-glass phase transition. 

KEY WORDS: Lattice spin systems; random site long-range interactions; 
Kac-Siegert transform; Gibbs states; order parameters; ground states. 

INTRODUCTION 

A complete description of spin systems with two point  interactions at high 
temperatures has been given in ref. 13. The main idea of  this work was as 
follows: First we use the Kac-Sieger t  t ransform to pass f rom a spin system 
(with discrete variables) to a lattice field system (with cont inuous 
variables). The corresponding field system was described by a Gaussian 
measure per turbed by a local interaction. At high temperatures the interac- 
tion was small and a suitable use of Brascamp-Lieb/5) inequalities allowed 
us to get a complete description of our  system. The main point  was that  in 
this way we were also able to study the systems with (nonclassical) long- 
range interactions, i.e., these which are not  absolutely summable.  (In 
Section 2 of  the present paper  we give a generalization of  the results of  
ref. 13 to systems with more  complicated interactions). 
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Let us note that the models of lattice spin systems with long-range 
interactions are considered to be important for understanding the physics 
of alloys of magnetic (e.g., Fe) with nonmagnetic (e.g., Au) metals. After 
studying the high-temperature disordered phase of interesting models, a 
challenging problem is to find a way to describe the low-temperature 
region. There is no rigorous result concerning the low-temperature 
behavior of systems with long-range interactions, aside from the mean- 
field Sherrington-Kirkpatrick models with random bond interactions (3/ 
and with random sides. (14) In fact, even for systems with classical long- 
range interactions there is no systematic study of the low-temperature 
region except for ferromagnets (see, e.g., refs. 2, 9, 11, 15-17, and 19) and 
interactions with "small" long-range part. (22) 

We mention also the results on the absence of phase transitions for 
random bond (classical) long-range interactions in refs. 4, 6-8, 10, and 21 
and for classical long-range interactions in refs. 8, 12, 20, and 24. In the 
present paper we take a step in the direction of the low-temperature region 
for systems with long-range interactions. We argue that the field picture 
can be useful also for these pourposes. 

First (in Section 3) we show that the spin picture and the field picture 
are equivalent in the sense that the sets of Gibbs measures of correspond- 
ing spin and field systems are isomorphic. Moreover, we prove that there 
is also a correspondence between order parameters, which allows us to give 
a meaning to the ferromagnetic and spin-glass phases in the field picture. 
To understand the low-temperature behavior of a lattice spin system, it is 
very important to know the structure of its ground states. Motivated by the 
results of Section 3, we propose to study this problem in the field picture. 
There we can deal with continuous variables, which makes the analysis 
possible. In this way we get some results concerning ground states in 
Section 4. In particular, we exhibit a class of systems possessing infinitely 
uncountably many ground states. One may expect that such systems can 
have an interesting behavior at low temperatures, including the spin-glass 
phase transition. 

1. P R E L I M I N A R I E S  

We consider a spin system on a lattice F -  7/a, de  N. Let ~ denote the 
family of finite sets in F. Let Yo =- {A, e o ~ } n ~  be a countable base of Y,  
which means an increasing sequence of sets which is absorbing, i.e., for 
each A ~ ~ there is no e N such that A c A,0. If not otherwise stated, ~o 
will be assumed to be a van Hove sequence. The number of elements in 
A e ~- is denoted by [AI. 

Let (S, 5 p) be a single spin space, consisting of the set S = { - 1, 1 } 
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and 5 e the a-algebra of subsets in S. A space of spin configurations s is 
defined to be (f2, 22)-- (S, Sg) r A spin at site i e F  is by definition a 
coordinate function 

Q ~ s ~ s i e S  (1.1) 

For A ~ F, let 22A be a a-algebra generated by the functions {si: l e A } .  Let 
#o be a free measure on (f2, Z') defined as a product of uniform probability 
measures on (S;SP). Similarly taking Oo= {0, 1}, we define a space 
(O, (9)= (O0, (90) r. A coordinate function ni, ie  F, on (O, (9) will be called 
an occupation number variable. Let CA ~ (9 with A c F denote a a-algebra 
generated by {ni: i e A } .  We define the action of translation group on 
(f2, X) x (O, (9) by setting 

(TkS)i=Si_k, (Tkn)i:=ni_k (1.2) 

Using this, we can define a translation of functions and measures on 
((2, Z) x (O, (9) in the usual way. Let E be a translation-invariant product 
probability measure on (O, (9). Let ~e' denote the space of jointly 
measurable real functions on (f2, 22)x (O, (9). We wish to study the spin 
systems with interactions 

r ~- --. J// 

such that for any X e ~ ,  r x is Z'xX (gx measurable (briefly, q ~ x e S x X  (9x) 
and 

q~x(n, a)=nxqSx(a ) (1.3) 

where nx =- l-L~ x n~ and ai - t ' l i S  i .  

It is assumed that q~ can be represented in the form 

q ~ = 0 + ~  (1.4) 

with 0 a two-point interaction specified below and ~ a classical Gibbsian 
interaction sattisfying 

II~II-=sup y~ sup ( ~ t  < ~ (1.5) 
i ~ F  X E . ~  a 

To define 0, we set Ox_~O for IXJ 5 2  and for X =  { i , j }  we define 

Oi, j := - �89 yaiaj (1.6) 
where 

1 : 
Gij-= (~)~)a J~ . . . .  ) daq e ~q~i-j) G(q) (1.7) 
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with G(q) a real, symmetric function satisfying for some 0 < ~ < oo 

0<e~<d(q)~< Ildll~ < oo (1.8) 

An interaction 0 given by (1.6)-(1.8) can be a (nonclassical) long-range 
interaction in the sense that 

IGijl = ~ (1 .9)  
j ~ F  

Nethertheless, as shown in refs. 13 and 23, the corresponding spin 
system behaves thermodynamically well. As an example of an interaction 0 
satisfying (1.9), we can take in one dimension 

G(q) = - -  z(lq[ < qo) (1.10) 
qo 

for some 0 < qo < re. Then 

sin qo l i -  Jl 
a~= (1.1~) 

qo l i -  jl 

The other examples can be found in ref. 13 and together with some 
generalizations in ref. 23. For  A e ~ we define a Hamiltonian function by 

HA(OS)=-- ~ q~X (1 .12)  
X c A  

By our assumption (1.4) we can write it as follows: 

HA (q~) = HA(O) + HA (0) (1.13) 

2. SPIN A N D  FIELD PICTURES OF A LATTICE SYSTEM 

We consider a measurable space (Rr, N), with ~ the Borel a-algebra 
generated by product topology. Let/~c be a Gaussian measure on (Rr, N) 
with mean zero and a covariance G given by (1.7)-(1.8). 

Let cpe, i sF,  denote the coordinate functions on (Rr, N). For  flie R + 
and a Gibbsian interaction ~b we define a finite-volume measure #A, A e ~ ,  
on the space (~r ,  ~ )  x (f2, S )  by 

ttz(F)=_t%| #o( {exp(fil/2 Ei~z (Piai) exp[ - f lH  z((~(a) ) ] } F(~o, a)) (2.1) 
#~@ #o(exp(fl 1/2 ~-.ie~ q)iai) exp[-/~nA(~b(o'))]) 
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By the definition we have 

/~A jZ(' ) =/-t0(e-/~H~ (~).)/#o(e - ~u~ (~)) (2.2) 

where on the rhs of (2.2) we recognize the usual finite-volume measure for 
a spin system with interaction q~. 

Let us introduce a function 

U A( cP ) := In ( I'tO exp [ - fl H A( q) ) ] exp(flj/2 y~ie A (p ia i) exp[--flHA(q})] (2.3) 

Then we have 

#A I'~(" ) = #C (e U~(<~ )/I.tG (e UA(~~ (2.4) 

The important point is that #AI~ and #.~lz determine each other. We have 
the following lemma essentially proven in ref. 13. 

k e m m a  2.1. Any expectation of polynomial functions in (p 
variables can be represented in terms of expectations of polynomial 
functions in a variables and conversely. In particular, we have 

and 

~A(q),)= fl ~/2 ~ GUl~Aa j (2.5) 
j ~ A  

~A~p~Cpj=Gu+fl ~ G~,kGj, k,#A~r~ak, (2.6) 
k , k ' ~ A  

To get a proof, one considers expectations of monomials in the field q~. 
Integrating by parts with the Gaussian measure #a, one gets a linear 
expression in terms of expectations of monomials in spin variables a. Due 
to our assumption (1.8), this relation is invertible. It was observed in ref. 13 
that, using the field picture, it is easier, and possible at all if one considers 
long-range 0 interactions, to get a complete description of the 
corresponding spin system at high temperatures. Here we present a 
generalization of results of ref. 13. To formulate it, we shall introduce a 
finite-volume measure #~ with boundary conditions ~. We set 

~ , ( .  ) = ~ ( e  -~ wA<~, ~>. ) /~A(e- zwA~, ~)  (2.7) 

with 

V/A((~' (~)-~ -- E E Gij~Jaiq- E 
i~A j ~ A  c X ~ , X ~ A ~ . ~ , X ~ A C = / = ~  

~X(~X~A, ex~) 

(2.8) 
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whenever 

~A G~5j < oo (2.9) 
j c 

for all A 6 J0 and i6 A. Let 

I #~ (2.10) 
U~(q)) := lim In fie exp[-/~HA,(~b)] 

A' ~ ~0  //01 >2 a 

with 3e a point measure concentrated on 5. 

T h o o r o m  2.2. For any interaction q~ =-0 + ~b, with ~b a Gibbsian 
interaction satisfying (1.5) and 0 given by (1.6)-(1.8), there is 0 <  rio< oo 
such that for any 0 < f i < r i 0  the corresponding spin system is in the 
disordered phase. In particular, the Edwards-Anderson parameter 

qeA------lim ~ 1  ~ (]~10"i) 2 (2.11) 
s~0 IAI i~A 

is equal to zero and the system has a cluster property with the same decay 
as that of the interaction 0. Moreover, the limits of observables 

( F )  = lim ~ ~ ( /~ Tir) k (2.12) 

for k e N and any local function F, exist and are independent of boundary 
condition 5. 

REM: A similar result holds also for O(N), N~ ~, models. Note that 
there is no loss of generality in assuming 0 < e  from (1.8) instead of 
- - o o  < ~ .  

ProoL According to ref. 13, it is sufficient to pass to the field picture 
and then to show that there is 

0 < f l 0 <  ktdll L * (2.13) 

such that for all 0 < fl <//o the function 

is concave for any A ~ ~ and 5 satisfying (2.9). Using the definition (2.10) 
of U~, we get 

VA(q~) - -  = - - f l [ ( ~ i j - - # A , f l ( ~ + h ( q o ) ~ ) ( ( T i ,  ( ~ j ) ]  (2.15) 
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where ltA,/~(0+h(~>)e is a finite-volume spin measure corresponding formally 
to 0 = 0 and Gibbsian interaction ~b + h(~o)a with 

h(v,)o = {/~-%,,~,} (2.16) 

Now by standard methods one can show that for sufficiently small fl, the 
e has a cluster property independent of volume A ~ ~ ,  measure/~a,/~(o + h(e)~) 

"external magnetic field" h(~o), and boundary conditions & Moreover, the 
quadratic form 

A=- {Aij} 

A u -  = laA,e(~+h(~o>)(a,, aj) 
(2.t7) 

satisfies 

IIA]I ~<sup ~ [/ZA.e(0+h(~)~)(cr i, ~j)l <1  (2.18) 
i j 

if 0 < fl < flo for some sufficiently small flo, 0 < flo < oo, independent of 
A e ~ ,  5, and h(~p). Therefore we have 

0 2 
a~, a~, VA(~O) < 0 (2.19) 

for all A ~ Y and 0 < fl < flo with some 0 < flo < oo sufficiently small. This 
allows as to apply the machinery of ref. 13 to get the statements of 
Proposition 2.2. I 

Further, the field picture also can be used to consider low-temperature 
problems. For simplicity, from now now on we restrict ourselves to pure 0 
interactions plus eventual (random) external magnetic field. This case is 
sufficiently interesting and easier to study. 

3. E Q U I V A L E N C E  OF SPIN A N D  FIELD P I C T U R E S  

Let 0 be a two-point interaction defined in (1.6)-(1.8) and let h a -  
{hinisi}i~r be a one-point spin interaction. Let p]  denote the corre- 
sponding finite-volume measure (2.7) with external boundary condition 
given by configuration 5 [satisfying (2.9)]. For a field configuration ~ e ~ r  
such that for any A s Y 

j~%~ G , ~ j  < oo (3.1) 
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~ 

for all i eA, we define a finite-volume measure zt] (with field external 
boundary conditions ~5) by 

1 f ~ A  dfpi exp - ~ ~ Go.l(pi(pl - 2 a~Jl(~ (pi 
~ ( ' )  =- z~ ,,j~A j~Ac 

l e A  

x exp( UA)" 
" 7  

( 3 . 2 )  

where Z~ is the normalization factor and 

#o(e-~h'~'e~%~') 
UA(~O)-- ~ In (3.3) 

i~A IXO(e-ph'~') 

One can see that for any A' e fro and A c A' the kernel ZA + agrees with the 
conditional expectation with respect to ~a~ and associated to the measure 

# A ' "  

Now suppose we consider the measure #~. By the same arguments as 
used to prove Lemma 2.1, based on the integration by parts formula for 
Gaussian measure, one can see that the expectations #~(W(q~)) with local 
polynomials W(q)) determine the expectations {/~ a A } A ~ ~-. This gives the 
following result. 

I . e mma  3.1. The infinite-volume field measure 

#e  = hm #Al~ (3.4) 
~o 

(if it exists) determines the spin measure 

e _ ,~ (3.5) # z =  lira/~AIz 
~0 

Note that changing the integration variables 

~Oib""+qO;~'~Oi'~-fll/2 2 Ga~j, i e F  (3.6) 
j e A  c 

in expectations with the measure pA +, we get for any local function F e  NA0, 
Ao e ~ ,  that 

u~ [ exp( - /~ /~  Z + ~ ,  q,+~j)] F(~o - ~1/~ Z+~.~ a j~+)) 
~AF(q~) = lim 

A'~0 /~A(exp( _ t i m  Z j ~ A '  q)saj)) 

This can be rewritten as follows: 

with some probability measure p~. 

(3.7) 

(3.8) 
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Note that 

' t ~ A  c j ~ A  c 

for any A ' c  A. Using this and the fact that locally 

(3.9) 

formally, we get 

lim ~ Gu6~.=0 (3.10) 
~-0 j E A  c 

(( )) ~eF(~o)=lim#Ar(cp)=limp~A F ~o-fl ~/z ~ G.fgj 
,~:0 ~ 0  j ~ A c 

= lim pA(F(q~)) (3.1 I) 
~o 

and 

~ 0  j ~ A c "YrO 

= (lim pA)(~](F(~o))) (3.12) 
~0 

This implies that for any A o ~  the infinite-volume field measure / ~  
satisfies 

= #~(F(cp)) (3.13) #~(X~o(F)) 

i.e., /z~ is a Gibbs measure for the family {rc~}A~ ~. This together with 
Lemma 3.1 give us the following result. 

T h e o r e m  3.2. Any infinite-volume spin m e a s u r e / ~  corresponding 
to the interaction {O+ha} is uniquely determined by the infinite-volume 
Gibbs measure ~ of the corresponding field system. 

In ref. 13 we saw that the use of the field picture proves to be a very 
effective tool to determine the properties of spin systems at high 
temperatures. (It turns out that it was easier to investigate the observable 
quantities 

Elze(F) =- lim 1 ~a ~o -(-~ i (kt~ TiF) ~ (3.14) 

or corresponding mean susceptibilities than the/~e themselves.) 
Since Theorem 3.2 is independent of temperature, it may be useful for 

the study of the low-temperature region. Note that in the field picture we 
deal with continuous variables, which can make some renormalization 
group analysis possible. On the other hand, such an analysis in the case 
of spin variables is usually rather cumbersome. For the investigation of 
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the low-temperature behavior of a lattice system it is helpful to have 
some information about its ground-state configurations minimizing the 
corresponding Hamiltonian function. It is very hard to get such informa- 
tion for a spin system with long-range interaction, as is usually the case 
when one deals with discrete variables. In the next section we show that 
such information is available for the field system. Therefore it may be better 
first to study the structure of the low-temperature field theory and then use 
Theorem 3.2 to get a description of the corresponding spin system. 

To understand the physical content of this passage, we should give a 
meaning in the field picture phase transitions of interest to us, such as 
ferromagnetic and spin-glass phase transitions, which have a well-defined 
sense for spin systems. This is provided by the connection of the order 
parameters given below. 

For k = 1, 2, let us define the following order parameters: 

Q ~  =l im 1 Z (3.1s) 
i c A  

and 

T h e o r e m  3.3. 
the sense that 

and 

ProoL 
get 

Hence we have 

Qf)-limo~A[ Z (#~a,) k (3.16) 
i ~ A  

The order parameters O (k) and O (k) are equivalent in ~--- (p ~-,0- 

Q(n=/3,/2 d(0) Q~n (3.17) ~p 

/311~211-1Q~) < 0(2)</3 11021l O(2~ (3.18) 

Using the integration-by-parts formula for field variables, we 

#~q~i=/3 m ~ G~#Aa j (3.19) 
j ~ A  

1/2 1 

2 2 ' 111 i~A i~A j~A Gij~ACTj 

=/31/21 2 E Gij~A~rje 
i ~ F  j ~ A  

1 
G ij [d A f f  j -/31'2Tyl 2 E 

i ~ A  c J E A  

(3.20) 
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Since 

Go=G(0 ) (3.21) 

then 

lim fl~/2 1 ~o - ' ~ i ~ r  E Gii]2~(rJ=flua4(O)Q(~ 1) (3.22) 
flea 

On the other hand, we have formally 

l i m ~ l  ~ 2 G u ~ a J = O  (3.23) 
IA} i~A c j~A S~o 

This together with (3.22) and (3.21) imply (3.17). 
To show (3.18), we use (3.19) to get 

1 aj,u~ a / )  (3.24) 

Since 

2 G;,O~, = G;~, (3.25) 
i~F 

then the rhs (3.24) can be written as follows: 

! 

Gjj,~Aai#Aaj' 
j} A 

- - f l ~ i ~ A  ~ j}A G0/~AO-j (3.26) 

Hence 

1 1 j~  2 ~ e (3.27) 
l E A  j ,  A 

Since from our assumption about (~ we have in the sense of quadratic 
forms 

G 2 ~ H(~2ll ~ 6ij (3.28) 
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then (3.27) implies that 

1 1 ~ (#Aa~) 2 (3.29) 

Passing with A to F, we get the rhs inequality in (3.18). Inverting (3.19) 
and going by similar arguments as in (3.14)-(3.29), we get the rhs 
inequality of (3.18). This ends the proof of Theorem 3.3 | 

4. ON THE STRUCTURE OF THE SET OF G R O U N D  STATES 
FOR LATTICE S Y S T E M S  

In this section we study the structure of the set of ground states for the 
lattice systems considered in Section 3. Motivated by Theorem 3.2, we 
would like to do our analysis in the field picture, where we can deal with 
continuous variables. A field system of interest has the following formal 
action: 

with 

H((p) = 1 ~ G-~ q)~ ~j q ) j - ~  U~(q~) (4.1) 
i , j ~ F  i c F  

Ui(~oi) - In \ #0e-~h'~' j 

- In ch[n~(3m~oi- 3h,)] - In ch(3h~n,) (4.2) 

The corresponding infinite-volume probability measure can be formally 
written as 

#(F(~~ =~1 f ~q~ e-m~~ (4.3) 

The ground states of the field system are by definition equal to the global 
minima of the action H. 

A necessary condition for q~ to be a configuration minimalizing the 
action (4.1) reads 

/ Oq~i H(~o) ~ G~l~os Ui (~pi) = 0 (4.4) 

for all i ~ F. Let us note that H is dependent on the reciprocal temperature 
3 of the corresponding spin system. Therefore one may expect that also the 
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set of ground states will depend on ft. At high temperatures we have the 
following result. 

T h e o r e m  4.1. Suppose 

fl [IGH < 1 (4.5) 

Then for any configuration {ni} the action H has only one global 
minimum. 

We remark that exactly under the condition (4.5) we have proven in 
ref. 13 that the corresponding lattice system is in the disordered phase. 

Proof. It is sufficient to observe that under the condition (4.5), the 
Hessian form 

~2H 
~(PiO(PJ GO. 1 6uflni{ch[ni(-flh,+ J~l/'2(/0i)]} (4.6) 

is strictly positive definite (no matter what the external magnetic field {hi} 
is). | 

To analyze the low-temperature region, we use (4.2) and rewrite (4.4) 
in the more explicit form 

(G 1@)i = fl~/2ni th( -flh, + fll/aq)i) (4.7) 

For simplicity we will take a translation-invariant external magnetic field 
h~=h, i~F. 

Suppose that all n, = 1. Then a first easy solution of (4.7) (which exists 
for any G) is given by 

q~i= ~o, i e F  (4.8) 

where Go e N satisfies 

Using the fact that 

do:- F. Go~>O 
j eF  

we introduce a new variable 

(4.9) 

(4.10) 

~o -=/~-1/~ doir (4.~ 11 
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and write (4.9) as follows: 

~o = th [flGo({0 - Golh) ] (4.12) 

Simple analysis of this equation gives the following result. 

T h e o r e m  4.2. If h = 0, then for flGo < 1, Eq. (4.12) has only a zero 
solution (minimum of the action), whereas for fld0 > 1 there are two 
nontrivial solutions + J{0L corresponding to minima of the action and the 
zero solution corresponding to a local maximum. Suppose h ~0.  If 
IGolhl < 1, then there is t i c - t i c ( h )  satisfying flcGo> 1 such that for any 
fl > tic, Eq. (4.12) has three solutions ~1 < {2 < {3. Two of them, ~2 and {3, 
correspond to minima of the action and ~2 to a local maximum. There is 
only one global minimum of the action. 

For I d o l h l  > 1, Eq. (4.12) has only one solution, no matter how small 
the temperature. 

It is useful to introduce the energy density e(~0) of a ground state (p by 

1 
e(q)) = limo% I-~ H(q~ (4.13) 

with q)tA coinciding with q0 inside A and identically equal to zero outside 
A. In the translation-invariant case for q~ given by (4.8)-(4.12) we get 

e (q~)  = 1 ~ t 2 2G0 ~o - I n  ch ( - f l h  + fll/2~o ) (4.14) 

Now let us consider a non-translation-invariant case. Assuming that hi =-O, 
ie  F, we would like to look for ground states of the form 

q~, = ~7~ (4.15) 

where ]~h >~ 0 and 5 , -  n~s~ satisfies 

2 a~ji~j ~ l~i (4.16) 
j~F  

with some 2 ~ + ,  0~<2 1~ j]~ll--1. 
Using (4.7), (4.15), and (4.16) we get the following equation for ~: 

;t 1~ = fl~/2 th(fl~/2~) (4.17) 

Introducing 
~ ~ j~-1/22-1~ (4.18) 

we can rewrite (4.17) in the form 

~=th(fl2{) (4.19) 
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It is known that  (4.19) has nonzero  solution iff 

f12 > 1 (4.20) 

Fo r  such fl we have two nonzero  solutions differing only in sign. 
Let us now come back to condi t ion (4.16), which is the main  point  of 

our  analysis. We would like to exhibit a class of G for which (4.16) is 
satisfied for infinitely uncountab ly  m a n y  configurat ions {cYi_= ni&}. 

D e f i n i t i o n  4 .3 .  We say that  a covariance G satisfies a condi t ion 
(C) iff there is an open symmetr ic  set Ao c supp G such that  for any q ~ A 0 

G(q) = 2 = const (4.21) 

Note  that  condit ion (C) defines a class containing interesting examples  of 
long-range interactions,  e.g., given by (l.10). 

Let  {#} now be a family of probabi l i ty  measures  on (f2, Z') dependent  
on n ~ O satisfying for 

C~ := E#(G6j) (4.22a) 

1 f( daq e ~q~'-j~ C(q) (4.22b) C o - ( ~ ) ~  . . . .  ~ 

the requirements  

and 

supp C(q) = A _ Ao (4.23a) 

(~(q) = (22)%Z( q e A) (4.23b) 

with some constant  0 < c < 0o. 
Note  that  

E#(rYirYi) = C ,  = c IA] (4.24) 

and since rYirY~ = n~, so c satisfies the normal iza t ion  condi t ion 

E(no) 
c = - -  (4.25) 

IAI 

Using the condit ions (4.21)-(4.23), we see that  

( )2 
E# ~ G ; ' f f j - 2 - ' f f ,  = 0  (4.26) 

\ j ~ F  



1526 Zegarlinski 

This is because the lhs of (4.26) equals 

E Gff~C;j'Gj', ~ -  22-~ E GfflCji ~- ~-2Cii 
J, J ' j 

_ 1 f~ ddq [G(q) - t - 2 - ~ ]  2d(q)  
(2~) d . . . .  ~ 

and by our assumptions 

d ( q )  ~ - ,~ ~ = 0 

on the support of (~(q). 

ddq [G(q) 2 d(q)- 22 ld(q) I C(q)  + }~ Zd(q)] 

(4.27) 

(4.28) 

The equality (4.26) means that there is a set 0 of E of measure one 
and a set of measures {#~ : n ~ 0}  such that (4.16) is satisfied tt,-a.e., n ~ 0. 

To finish our considerations, we only mention that using the methods 
of ref. 13 one can really construct a family of continuous measures {/~,,}, 
n e O, satisfying (4.22) and (4.23). 

Suppose we have ~? and ~ # 0  satisfying (4.16) and (4.17). We want to 
show that the corresponding (p defined by (4.15) is a minimum of our 
action if fl is sufficiently big. To see that, we consider the Hessian 

0 2 H  

= G~' - 6unifl(ch fl2~ni) 2 (4.29) 

where ~ - ~(fl) satisfies (4.19). If fi --* ~ ,  then ~(fi) -~ 1. Therefore, there is 
0 < tic < oo such that 

~ ( c h / ~ ; v ~ )  2 < I[GII 1 (4.30) 

for all fi > flo- This, however, implies 

82H 
- -  ( e ) > O  (4.31)  
&Pc 8~p j 

for all f l>  flo, i.e., corresponding configurations are the ground states of 
our system. Note that, as follows from (4.29), the dilution improves the 
properties of the system, in the sense that its action becomes more and 
more convex. 

Let us compute formally the corresponding energy density, defined by 

e ( (p ) - l im 1 H(qOLA) (4.32) 
.~0 IAI 



Spin and Field Pictures of Lattice Systems 1527 

with (PlA being equal to q~ in A and zero outside. We have 

1 t ) 
IA I - ~  E G~jl~i~J - E I n c h  ~1/2r t 

i,j~A teA 

2 iEA i~A 

1 1 
____~2 Z Gff'f,Sj (4.33) 

[A[2 i~A 
jeA c 

The second term on the rhs of (4.33) converges formally to zero as A I"F. 
The first term on the rhs of (4.33) in the limit gives 

lims% ~ i~A {22-15} -- in ch fl~/z~S, 

= (~ ~,~-~ 

-lnch//1/2~)lim 1 ~ ni 
•0 IAI i~A 

- In ch fll/2r Eno (4.34) 

where we used the fact that E is a translation-invariant ergodic measure. 
Let us remark that 

(1r189 (4.35) 

for large/3. For given G satisfying (C) any family {~n} for which (4.22) and 
(4.23) holds gives the same result. 

Summarizing, we have the following result. 

T h e o r o m  4.4. Suppose h = 0 and G has a flat piece, i.e., there is an 
open set A o c c  (-z~, ~r) d such that 

(~(q) = 2 -- max (~(q) 

for all q EAo. Then the corresponding spin system possesses infinitely 
uncountably many ground states given by (4.15)-(4.17), with the same 
energy density 

e(q)) = (�89 2 - l n c h  fl~/'2~) Eno (4.36) 

Moreover, each ground state cp is spin-flip degenerate; i.e., (-~0) is also a 
ground state. 

822/59/5-6-28 
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